
3D Interactive Knobs, Sliders and Buttons 
By float_oat 
 
This Unity asset package allows you to add knobs, sliders and buttons to 3D scenes. The 
player can interact with these controls to change different variables in the game, such as 
moving a door, changing the sound volume or turning off lights. If you have any questions or 
need help, send me an email at floatoat@gmail.com 
 

Usage quick guide 1 

Basic use tutorials 1 
Adding controls to a scene 2 
Opening a door with a knob 2 
Changing audio volume with a slider 6 
Turning off lights with a button 11 

All settings 13 
Knobs and sliders 13 
Knobs 14 
Sliders 14 
Buttons 14 

Extending functionality 15 
Changing the models 15 
Adding functionality in the code 15 
Interacting with other devices than the mouse 16 

Endnotes 16 

Usage quick guide 
Drag prefabs from the prefabs folder into your scene. For buttons, define Unity actions for 
what happens when the button is pressed. For knobs and sliders, attach different 
“KnobListener” scripts (TransformKnobListener, LightKnobListener, 
MixerParamKnobListener, or your own implementation of KnobListener) to define what the 
knobs/sliders control. Knobs and sliders can also use Unity actions if you want. 

Basic use tutorials 
This section contains tutorials for using this asset package. These tutorials require that you 
import the package, including the “Examples” folder. Completed versions of these tutorials 
can be found under Examples/Scenes/TutorialScenes.  

1 

http://floatoat.thomasnakagawa.com/
mailto:floatoat@gmail.com


Adding controls to a scene 
To start using the controls, navigate to the prefabs folder of the asset package.  

 
The basic versions of the prefabs with standard settings are “Knob”, “PushButton” 
 and “Slider”. Drag the prefabs into your scene, then position and scale them to where you 
want them to be. 

Opening a door with a knob 
We’re going to be making a pair of sliding doors, like on subway trains. Your player will be 
able to open and close these doors by turning a knob. Add a knob (found in the prefabs 
folder) and position it to be facing the camera. Add a cube to your scene, renamed it 
“LeftDoor” and scale it to be door shaped. Duplicate it, rename the duplicate “RightDoor” and 
position it to be next to the first door. Here are my left and right door objects, although it’s ok 
if yours have different transform values. 

2 



 
 
Your scene should look something like this: 

 
 
 
If you run the scene now, you should be able to click and drag on the knob to turn it, but the 
doors will not be opening yet. To add functionality, we will be adding knob listeners to the 
knob. Select the knob object, click “Add Component” and type in “Transform Knob Listener” 
and add it to the game object. Drag the LeftDoor Into the “Transform To Manipulate” field, 
and change the “Max Value” to be [-2, 0, 0] 

3 



 
If you run the scene now, turning the knob should move the left door back and forth. Now, 
let’s make the right door move too. Add another Transform Knob Listener to the knob, and 
this time drag in the right door as the “Transform to manipulate”, and set the Max Value to [2, 
0, 0]. The knob object should look something like this now: 

 

4 



When we run the scene now, both doors are moved by the knob. However, they start off 
halfway open. 

 
We want the doors to start closed, so to fix this we need to set the knob’s initial rotation. 

 
If we look at the parameters of the Rotary Knob component, we can specify the minimum 
angle of rotation, the angle range and amount rotated. The “Amount Rotated” variable 
contains how far past 0 the forward vector the knob is currently rotated. Let’s change it from 
0 to -135 so that the knob starts at its minimum position. With the knob object selected, we 

5 



should see in the Scene view that the filled red angle to not showing, meaning the knob will 
start rotated all the way to the left. 
 
Play the scene now, and the doors will start off closed, and can be opened by turning the 
knob. 

 

Changing audio volume with a slider 
Let’s make a slider for controlling the game’s music volume. Add a slider (from the prefabs 
folder) to the scene. Position and rotate it so that it’s facing the camera. 

 
If you run the scene now, you should be able to click and drag on the slider to move it up and 
down. 
 
Now, to make the slider into a volume control, we’ll need some sound and an Audio Mixer.  
 
First, let’s set up the mixer. Create an AudioMixer and select the master AudioMixerGroup. 

6 



 
 
Then, with master selected, go to the inspector and right click on the Volume parameter of 
the Attenuation effect. Select “Expose ‘Volume (of Master)’ to script”. 
 

 
 
Now, find the “Exposed Parameters” dropdown in the mixer and click it. 

 
 Then, right click on “MyExposedParam” and rename it to “MasterVolume” 

7 



 
 
Our AudioMixer is now setup to have it’s volume controlled by the slider. 
 
We need our scene to play some music. Add a gameobject to the scene, attach an 
AudioSource, set the clip to “example_song”, check the “loop” checkbox, and set the output 
to be the Master channel of the mixer you just made. Your audio object should look like this: 

8 



 
 

9 



Now the last part, lets setup the slider to control the volume. Select the slider object in the 
scene and add a “Mixer Param Knob Listener” component. 

 
Set the Mixer field to be the mixer you created earlier, and set the Exposed Param Name to 
be “MasterVolume”. 

 
The Min Value and Max Value are already set to the correct values for a volume control. 
 
Run the scene and drag the slider up and down. The slider should be working as a volume 
control, but it’s not quite right because the music seems silent for most of the slider 
positions except the very top. This is because audio volume is perceived logarithmically, but 
the slider is controlling the volume linearly. To fix this, select the slider object and click on 
the “Taper Curve” field. Change the curve to this shape (select it from the presets at the 
bottom). 

10 



 
 
Now, the volume control should work as expected. This preset curve is not a true logarithmic 
curve, but it’s close enough for most uses. Try adjusting it to be steeper at the beginning to 
be closer to a logarithmic curve. 

Turning off lights with a button 
Add a PushButton (from the prefabs folder) to your scene and put it somewhere that the 
camera can see it. 

 
In this example, we’ll be turning on and off the default directional light, but you can choose 
any light for your scene.  
 
Select the PushButton and drag the Directional Light into the Action field of the Push Button 
component. 

11 



 
 
Click “No Function” and choose SetActive under Gameobject. 

 
Make sure the checkbox is not checked so that the button makes the light turn off. 

12 



 
 
Run the scene and click on the button. The light should turn off. 
 
Now, let’s add a second button for turning the light back on. Duplicate the PushButton, move 
it to be next to the first one, and now check the box in the Action field. Run the scene, and 
you should be able to turn on and off the light with the buttons. 

 

All settings 
These tutorials covered the basics of the controls, but you can customize them further with 
these settings: 

Knobs and sliders 
 

Use curve  Toggles whether or not to use the taper curve. Turning this 
off saves some computation, so if the curve is linear you 
might as well turn it off. 

Taper curve  Changes how the output value of the knob changes as the 
knob/slider position changes. 

13 



Handle grabbed scale  Makes the scale (size) of the model change when the 
knob/slider is grabbed with the mouse. Useful for giving 
feedback to the player as to what they clicked, but also 
gives a less realistic feel to the controls. 

Knobs 
 

Min angle  The angle relative to the forward vector that 
is how far back the knob can be turned. 

Angle range  The knob’s range of motion. How far 
forward from the min angle it can be turned. 

Amount rotated  The current angle relative to the forward 
vector that the knob is set to. 

Mouse drag sensitivity  Only for when in VERTICAL_DRAG mode. 
How much the mouse movement affects 
the knob rotation. 

Interaction type  Changes how the knob is interacted with by 
the player. ROTATION_DRAG mode means 
the knob is turned by rotating the mouse 
around it, and VERTICAL_DRAG mode 
means moving the mouse up and down 
rotates it. 

Sliders 
 

Min Position  How far back on the Z axis relative to the 
object’s pivot the slider handle can move. 

Movement range  How far forward on the Z axis relative to the 
min position the slider handle can move. 

Amount moved  The current position relative to the min 
position of the slider handle. 

Buttons 
 

Push in animation length  How long the button animates pushing in 
when pressed down. 

Release animation length  How long the button animates returning to 
normal position when released. 

14 



Handle push in distance  How far on Y axis the handle part of the 
button moves when pushed down. 

On press sound  The sound clip to play when the button is 
pressed (Only if an AudioListener is 
attached) 

On release sound  The sound clip to play when the button is 
released (Only if an AudioListener is 
attached) 

 

 

Extending functionality 
The provided settings are only a starting point for customizing the controls. You can build on 
top of this asset package with your own models and code. 

Changing the models 
You can replace the model objects in the prefabs with your own models. The scripts require 
that a certain object in the prefab be called “handle”: 
 
For knobs: handle is the object that turns. 
For sliders: handle is the object that moves up and down. 
For buttons: handle is the object that pushes in when clicked. 
 
Note: make sure to update the collider size on the parent object when changing the models. 
Child objects of the prefab should not have colliders, only the parent. 

Adding functionality in the code 
To make knobs and sliders do things that are not included in the provided listeners 
(transform, mixer param and light), you can create your own listeners. First, create a new C# 
script. Add “using KnobsAsset;” to the top of your script. Then, make the script extend the 
“KnobListener” abstract class. Finally, implement the OnKnobValueChange method. The 
parameter of this method “knobPercentValue” is a number from 0 to 1 which is the position 
that the knob is turned to. Once you’ve finished making this script, attach it to a knob or 
slider. 
 
Although the abstract class is called KnobListener, it works for both knobs and sliders. 

15 



Interacting with other devices than the mouse 
The knobs, sliders and buttons are interactable by default with the mouse, but you can 
implement your own input code to make them interactable from another device. The knobs 
and sliders have public methods for changing their value, and buttons have methods for 
pressing and releasing them. 

Endnotes 
Thank you for purchasing my asset! If you have any questions, send me an email at 
floatoat@gmail.com. If you like, let me know about what project you’re using this asset for. I 
hope your project goes well! 

16 

mailto:floatoat@gmail.com

